

Final Report
Jakobsen Physics

Peter Giuntoli

4/16/2008

PHY 350 Jakobsen Physics Peter Giuntoli

 Copyright DigiPen Institute of Technology 2007-2008 1

CONTENTS

Overview ... 2

Engine ... 2

Graphics .. 2

Input .. 2

Memory Management ... 3

File IO ... 3

Physics .. 3

Ragdoll Setup .. 5

What Went Wrong .. 5

What Went Right .. 6

Project Features/Controls .. 7

PHY 350 Jakobsen Physics Peter Giuntoli

 Copyright DigiPen Institute of Technology 2007-2008 2

OVERVIEW

The intent of the project was to create a physics engine that would be used in the creation of an

American Football simulation. This idea was to model a system after the popular Euphoria
1

engine. This meant that animation of characters should be able to work seamlessly with the

physics engine, creating lifelike animations in a variety of physics based situations (primarily

tackling).

The initial plan was to create an engine based off of the paper Advanced Character Physics
2
 by

Thomas Jakobsen. This system resorts to handling physics by placing particles on objects which

act as physical points of interest. These particles are then connected by constraints that attempt

to keep particles at a specified distance from each other. If enough constraints are placed, this

simple system of particles and constraints can model a rigid body effectively, as well as allow for

simple creation of ragdolls.

ENGINE

Being the author’s first attempt at a game engine, there were some snags in the process but the

engine ended up being passable for the task at hand. If the engine were transitioned to be used in

a game, major overhauls would most likely be necessary due to ease of use and performance

issues.

GRAPHICS

The graphics engine consisted of a basic DirectX framework which was constructed with major

help from a few key websites
3
. Functionality includes the loading of .x models and object basic

lighting. Models can be drawn in wireframe or filled mode depending on user preference. There

are also basic debugging functions which allow the user to draw wireframe boxes and lines

anywhere in the world. This feature was invaluable when testing points of collision.

INPUT

Input is handled easily by using the Simple DirectMedia Layer
4
. The library enables the easy

creation of Win32 windows as well as a messaging system that wraps around the usual Win32

winproc. The messaging system can be used to catch windows messages and also gives the user

input polling functionality if it is desired. Without having to deal with the normal Win32

frustrations, the process of building an engine was made much easier.

1
 http://www.naturalmotion.com/euphoria.htm

2
 http://www.teknikus.dk/tj/gdc2001.htm

3
 http://www.toymaker.info/Games/html/direct3d_faq.html

4
 http://www.libsdl.org/

PHY 350 Jakobsen Physics Peter Giuntoli

 Copyright DigiPen Institute of Technology 2007-2008 3

Some complications that arose were the fact that a user can hold down on a key and briefly move

the mouse outside of the primary window. This can be done without the user knowing (the

mouse cursor is hidden and always brought back to the middle of the screen each loop) but will

cause the screen to stop receiving windows messages. If the user lets go of a key while the

cursor is outside of the window it will still be registered as being down. Because of this, there

are points in time where the user’s camera may continue to move in a certain direction while the

user has released all keys. Not much effort was put in to solving the problem, as it occurs very

rarely, but an easy fix would be to use the normal Win32 winproc which would more than likely

be done on a larger scale project.

MEMORY MANAGEMENT

In hindsight, memory management was probably unnecessary but was put in so that the engine

would feel more complete. The memory manager uses boost::pools
5
 to do most of the heavy

lifting. The memory manager handles creation of all objects in the game except for the engine

itself. This helps to ensure that there are no memory leaks in the program.

FILE IO

To make the importing of levels and models easier, TinyXML
6
 was utilized. This XML file

loading system made the process of creating rigid bodies and ragdolls multitudes easier than

having to code all by hand.

PHYSICS

The most important part of the entire engine only began to come together in a workable state

during the final stages of the project. The physics engine uses Jakobsen constraints, as discussed

earlier, to model rigid bodies and ragdolls. A drawback comes from the fact that only

rectangular prisms are able to be used with the Separating-Axis Test, so the ragdoll is made

completely of rectangular objects. This limitation does not entirely hinder the ragdoll model, but

if the system was brought in to a game the limitation would most likely need to be removed.

In essence, the physics loop consists of four steps. First, all particles have external forces

applied to them. In the simulation, this only consists of gravity.

Next, all particles have their positions updated. This process is done by using a Verlet integrator.

At this point in the simulation, wind resistance is applied to the particles. This wind resistance

ends up being the only resisting force. The force is applied by slowing down the velocity of the

particles by a scalar. In effect, this will bring most objects to a stop but has some unwanted

results (Note: ragdolls still move along the ground because of the constraint solvers). The major

5
 http://www.boost.org/doc/libs/1_35_0/libs/pool/doc/index.html

6
 http://www.grinninglizard.com/tinyxml/

PHY 350 Jakobsen Physics Peter Giuntoli

 Copyright DigiPen Institute of Technology 2007-2008 4

problem is that terminal velocity, when using a normal gravitational acceleration, appears very

low. This can be combated by increasing gravity until the “look” is right but the speed in which

ragdolls slide along the ground also increases.

Broad phase collision detection is then performed by doing sphere-sphere and AABB-AABB

checks. If objects are not determined to be separated after the broad phase step, a separating axis

check is performed. This test is optimized for rectangular prisms which means that only 15

possible separating axis need to be checked.

If objects are determined to be interpenetrating, the axis of minimum penetration is chosen to be

the collision normal. Penetration depth is found by taking the dot product of the collision normal

with the maximal penetrating vertex of one object subtracted by the dot product of the collision

normal with the minimal penetrating vertex of the other.

During collision resolution, the type of collision is determined by using the collision normal and

dotting all vertices of an object against it. Any vertices that fall within an epsilon (currently .01)

of the maximal or minimal penetration (depending on the object) are saved. From this

information, it can be determined if there is a Face-Face, Face-Edge, Face-Vertex, Edge-Edge,

Edge-Vertex, or Vertex-Vertex collision. All collision resolution types end up moving a point on

all collision features by a magnitude equal to half of the penetration depth in the direction of the

collision normal. Finding the collision point, and the magnitude each vertex on the collision

feature must move, is simple for some cases but proved difficult for others, most notably Face-

Face collisions.

During Face-Face collisions, if a face is completely contained within the other, the barycenter of

the contained face is used as the collision point. If neither face is contained within the other,

both faces are clipped. The resulting shape’s barycenter is then used as the point of collision.

To move a face after determining the point of collision, a 4x4 matrix is constructed which

contains all points of the face. This can be done because a face will always consist of four or

less points due to objects being rectangular prisms. The inverse of the matrix is then multiplied

against the point of collision to find a set of scalars that will be used to move the vertices of the

face. If an inverse cannot be found, a guess at those scalars is made by iterating the function:

𝑊𝑘+1 = 𝐼 − 𝑔𝑃 𝑊𝑘 + 𝑔𝑋. Where X is the collision point, I is the identity matrix, P is the 4x4

matrix of vertices, and g is some small scalar (.01 in practice). W is then used as the set of scalars

to move the objects.

After collision resolution, constraints are satisfied by iterating three times over all constraints in

an attempt to keep particles a set distance from each other. The only constraints implemented

were stick constraints. A valuable addition might be to include softer constraints that would

allow objects to be within a certain range from each other, in effect, having a minimum and

maximum distance that they could lie. It is believed that this addition could create a more

believable ragdoll.

PHY 350 Jakobsen Physics Peter Giuntoli

 Copyright DigiPen Institute of Technology 2007-2008 5

RAGDOLL SETUP

The ragdoll is set up by using ten boxes and twenty constraints connecting them. This makes a

total of 80 particles and 200 constraints per ragdoll.

Each limb is connected by using two

stick constraints that act as an

“elbow”. Setting up constraints in this

fashion allows limbs to move freely

along a single plane. The only

connected piece that uses more than

two constraints is the head, which is

connected by four constraints.

The setup of the ragdoll causes self

collisions almost every frame.

Although with small numbers of

ragdolls this does not create a

significant slowdown, once large

numbers are simulated this can create

a bottleneck.

Some possible speedups would be to create a bounding hierarchy for the ragdolls. Instead, each

box maintained its own bounding sphere and axis aligned bounding box.

WHAT WENT WRONG

The Jakobsen physics engine seemed to hinder project development more than help it. The

majority of the time spent on the project was spent on getting rigid bodies working. There were

many iterations on collision detection and resolution until finally settling on SAT and letting the

Verlet integrator handle resolution.

Originally, it was planned to do collision detection between faces and particles as well as

constraints and constraints. Although particle face collision detection was easy enough,

constraint vs constraint detection ended up taking a lot of time to figure out a solution for, and in

fact, a suitable solution was never found. The final attempt at a solution involved finding the

closest points on the two constraints at the beginning and end of the frame. Vectors were formed

between these points and if the dot product was negative, a collision was determined to have

occurred. Besides the fact that for a single box vs box test this required 324 tests (18 constraints

per box) causing a significant slowdown, the collisions detected were not guaranteed to be

collisions.

PHY 350 Jakobsen Physics Peter Giuntoli

 Copyright DigiPen Institute of Technology 2007-2008 6

The second biggest problem came when trying to find an affine combination for a point on the

face of a box. The affine combination is required for collision resolution since I do not use

impulse or inertia tensors. A simple matrix inversion can sometimes solve the problem, but the

majority of the time this is not the case. In a case where a matrix cannot be inverted, a linear

equation is iterated over until a guess at the solution is found. In some cases, the guess is so far

off that the simulation breaks and objects fly off to infinity.

WHAT WENT RIGHT

The finished engine has impressed a couple other DigiPen students who are interested in using

some of the functionality towards a senior game. It is yet undetermined if the ideas will carry

forward in to a game project but the respect of his peers is something the author greatly

appreciates.

Having ragdolls implemented in the last few weeks of the class was also very satisfying as there

were pressing concerns that the rigid body portion of the simulation might not be serviceable.

All fears were alleviated when the separating axis theorem was implemented and collision

resolution became believable. Unfortunately, this came near the end of the semester so not all of

the original goals of the project were able to be completed.

PHY 350 Jakobsen Physics Peter Giuntoli

 Copyright DigiPen Institute of Technology 2007-2008 7

PROJECT FEATURES/CONTROLS

Name Summary Key

Command

Scene 1 – Ragdoll This scene consists of a single ragdoll in the center of the world 1

Scene 2 – Box

Pyramid

This scene consists of a pyramid of boxes that vary in size. 2

Scene 3 – Box of

Boxes

This scene consists of 3, 3x3 layers of same size boxes. 3

Clear Scene This will clear the entire scene of objects. 0

Change Draw

Options

Switch between three draw modes. Filled shows the objects in a

normal fashion. Wireframe will display the wireframe version of

objects. Constraint will show all constraints in the world as red.

Tab

Draw Collision

Vertices

Draws green boxes around all vertices that are being updated do to

object collisions. Note, these do not include vertices update by

ground collision.

C

Move Camera Will move the camera around the world in a normal first person

camera fashion.

W,A,S,D

Adjust Camera

Orientation

Adjust the focus of the camera by moving the mouse around. Mouse

Movement

Change Gravity Cycle the gravity between two modes. Normal will have gravity

always point downwards. Point will make all gravity located

towards a single point above the ground plane.

G

Change Force of

Gravity

Change how much force is applied to objects due to gravity. Y, H

Change Wind

Resistance

Change how much “wind resistance” is in the world. This is the

only dampening force.

U, J

Pause Pause the Simulation Spacebar

